Dropout Feature Ranking for Deep Learning Models
نویسندگان
چکیده
Deep neural networks are a promising technology achieving state-of-the-art results in biological and healthcare domains. Unfortunately, DNNs are notorious for their non-interpretability. Clinicians are averse to black boxes and thus interpretability is paramount to broadly adopting this technology. We aim to close this gap by proposing a new general feature ranking method for deep learning. We show that our method outperforms LASSO, Elastic Net, Deep Feature Selection and various heuristics on a simulated dataset. We also compare our method in a multivariate clinical time-series dataset and demonstrate our ranking rivals or outperforms other methods in Recurrent Neural Network setting. Finally, we apply our feature ranking to the Variational Autoencoder recently proposed to predict drug response in cell lines and show that it identifies meaningful genes corresponding to the drug response.
منابع مشابه
Marginal Deep Architectures: Deep Learning for Small and Middle Scale Applications
In recent years, many deep architectures have been proposed in different fields. However, to obtain good results, most of the previous deep models need a large number of training data. In this paper, for small and middle scale applications, we propose a novel deep learning framework based on stacked feature learning models. Particularly, we stack marginal Fisher analysis (MFA) layer by layer fo...
متن کاملAdaptive dropout for training deep neural networks
Recently, it was shown that deep neural networks can perform very well if the activities of hidden units are regularized during learning, e.g, by randomly dropping out 50% of their activities. We describe a method called ‘standout’ in which a binary belief network is overlaid on a neural network and is used to regularize of its hidden units by selectively setting activities to zero. This ‘adapt...
متن کاملRegularization for Unsupervised Deep Neural Nets
Unsupervised neural networks, such as restricted Boltzmann machines (RBMs) and deep belief networks (DBNs), are powerful tools for feature selection and pattern recognition tasks. We demonstrate that overfitting occurs in such models just as in deep feedforward neural networks, and discuss possible regularization methods to reduce overfitting. We also propose a “partial” approach to improve the...
متن کاملLarge-Scale Multi-label Text Classification - Revisiting Neural Networks
Neural networks have recently been proposed for multi-label classification because they are able to capture and model label dependencies in the output layer. In this work, we investigate limitations of BP-MLL, a neural network (NN) architecture that aims at minimizing pairwise ranking error. Instead, we propose to use a comparably simple NN approach with recently proposed learning techniques fo...
متن کاملCombination of Diverse Ranking Models for Personalized Expedia Hotel Searches
The ICDM Challenge 2013 is to apply machine learning to the problem of hotel ranking, aiming to maximize purchases according to given hotel characteristics, location attractiveness of hotels, users aggregated purchase history and competitive online travel agency (OTA) information for each potential hotel choice. This paper describes the solution of team ”binghsu & MLRush & BrickMover”. We condu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.08645 شماره
صفحات -
تاریخ انتشار 2017